

TEACHING PROGRAMMING LOGIC THROUGH

INTERACTIVE PLATFORMS: A CASE STUDY ON STUDENT

OUTCOMES

Ergin Diko Yekin Abaz, page 83-91

ABSTRACT

Teaching programming logic is a critical step in

preparing students for more advanced studies in

computer science and related fields. However, many

students struggle to grasp abstract programming

concepts when taught through traditional methods. This

paper explores the use of interactive platforms to teach

programming logic and assesses their impact on student

outcomes. By utilizing interactive tools such as code

visualization, block-based programming environments,

and instant feedback mechanisms, students are provided

with a more engaging and hands-on approach to learning

programming logic. The case study analyzes student

performance, engagement, and understanding of key

programming concepts, highlighting the potential of

interactive platforms in enhancing the learning

experience.

Keywords: Programming logic, Interactive platforms,

Student outcomes, Code visualization, Block-based

programming, Learning engagement

Mr. Ergin Diko
International Vision

University, Gostivar,

N.Macedonia

e-mail: ergin.diko

@vizyon.edu.mk

Mr. Yekin Abaz
International Vision

University, Gostivar,

N.Macedonia

e-mail:

yekin.abaz@vizyon.edu.mk

UDK: 37.018.43:004]-043.5

Declaration of interest:

The authors reported no

conflict of interest related to

this article.

Vision International Scientific Journal, Special Edition, January 2023 83

Teaching Programming Logic Through Interactive Platforms: A Case Study on Student

Outcomes

84 Vision International Scientific Journal, Special Edition, January 2023

Introduction

The development of programming logic is fundamental to learning

programming languages and algorithms. Programming logic encompasses

the thought processes required to formulate solutions to problems,

typically involving sequencing, decision-making, loops, and conditions.

However, teaching programming logic, especially to beginners, has

traditionally been challenging. Students often struggle to connect

theoretical concepts with practical coding tasks, resulting in low

engagement and high dropout rates in introductory programming courses.

Interactive learning platforms have emerged as a potential solution to this

problem. These platforms, which often include features like code

visualization, block-based programming, and real-time feedback, aim to

make abstract concepts more accessible and engaging. By providing

students with immediate feedback and interactive exercises, these

platforms allow learners to experiment with programming logic in a more

intuitive and dynamic environment.

This paper presents a case study examining the impact of using interactive

platforms to teach programming logic to undergraduate students. The

study explores how these tools affect student outcomes, including

performance, engagement, and overall understanding of programming

concepts. Through a detailed analysis of quantitative and qualitative data,

the paper aims to provide insights into the effectiveness of interactive

platforms in teaching programming logic.

Literature Review

1. Challenges in Teaching Programming Logic

Research has consistently shown that one of the most significant hurdles

in introductory programming courses is helping students develop a solid

understanding of programming logic. Robins et al. (2003) highlighted that

students often struggle with understanding abstract concepts such as

loops, conditionals, and recursion. Furthermore, traditional lecture-based

teaching methods have been criticized for being insufficient in engaging

students or addressing individual learning difficulties (Guzdial &

Soloway, 2002).

Mr. Ergin Diko, Mr. Yekin Abaz

Vision International Scientific Journal, Special Edition, January 2023 85

2. Interactive Platforms as a Solution

Interactive platforms have been introduced in educational settings to

address these challenges. These platforms utilize real-time feedback,

visualization of code execution, and simplified, block-based programming

interfaces to help students conceptualize abstract programming logic.

Tools such as Scratch, Blockly, and Code.org’s learning environments

have been widely adopted in both K-12 and higher education, offering an

alternative to text-based coding for beginners (Resnick et al., 2009).

Block-based programming, in particular, has been shown to be effective

in helping students develop programming logic without the syntactic

burden of traditional programming languages (Weintrop & Wilensky,

2015). These platforms provide a low-entry point, allowing students to

focus on logical thinking rather than syntax, which has been shown to

reduce frustration and increase engagement.

Studies by Hsu et al. (2018) indicate that students using interactive, visual

platforms demonstrated higher engagement and better learning outcomes

compared to those in traditional programming courses. Real-time

feedback provided by these platforms enables students to learn from their

mistakes instantly, reinforcing correct programming logic and debugging

practices.

3. Theoretical Frameworks

The design of interactive platforms is often grounded in constructivist

learning theories, which emphasize learning by doing. Piaget’s theory of

cognitive development and Papert’s constructionism are key frameworks

that support the use of interactive and visual tools in programming

education (Papert, 1980). These theories suggest that learners build

knowledge more effectively when they are actively engaged in the

learning process and can manipulate elements in real-time to see the

consequences of their actions.

Methodology

This case study was conducted over one semester with undergraduate

students enrolled in an introductory programming course. The course was

divided into two sections: one using a traditional lecture-based approach

(control group) and the other using an interactive platform with block-

based programming and code visualization tools (experimental group).

Teaching Programming Logic Through Interactive Platforms: A Case Study on Student

Outcomes

86 Vision International Scientific Journal, Special Edition, January 2023

1. Participants

A total of 60 students participated in the study, with 30 students in each

section. The demographic profiles of the two groups were comparable in

terms of age, gender, and prior experience with programming.

2. Interactive Platform

The interactive platform used in the study was a combination of Scratch

and an online code visualization tool designed to support the teaching of

basic programming logic. The platform included features such as drag-

and-drop blocks to represent programming structures (loops, conditionals,

variables) and a code visualization window that allowed students to see

the execution of their code in real-time.

3. Data Collection

Quantitative and qualitative data were collected through a variety of

instruments:

• Pre- and post-tests: Both groups completed a pre-test at the

beginning of the semester to assess their initial understanding of

programming logic, followed by a post-test at the end of the semester to

measure learning gains.

• Assignment completion rates: The rate at which students

completed programming assignments was tracked throughout the course.

• Engagement surveys: At the midpoint and end of the semester,

students completed surveys measuring their engagement, motivation, and

satisfaction with the course.

• Focus group discussions: At the end of the semester, focus group

discussions were conducted with students in the experimental group to

gather qualitative feedback on their experiences with the interactive

platform.

4. Data Analysis

The data were analyzed using descriptive statistics for the quantitative

measures and thematic analysis for the qualitative feedback. Paired t-tests

were used to compare pre- and post-test scores within and between groups,

while engagement survey results were analyzed using Likert scale scoring.

Mr. Ergin Diko, Mr. Yekin Abaz

Vision International Scientific Journal, Special Edition, January 2023 87

Results

1. Performance Improvement

Students in the experimental group demonstrated significantly higher

learning gains than those in the control group, as reflected in the pre- and

post-test scores.

Table 1: Pre- and Post-test Scores (Average Percentage)

Group Pre-test Post-test % Improvement

Control Group 45% 68% 23%

Experimental Group 47% 83% 36%

As shown in Table 1, the experimental group experienced a 36%

improvement in test scores compared to a 23% improvement in the control

group. This indicates that the use of interactive platforms significantly

enhanced students’ understanding of programming logic.

Graph1 Pre-test and Post-test Results

2. Engagement and Motivation

Students in the experimental group also reported higher levels of

engagement and motivation compared to the control group. Survey results

indicated that 85% of students in the experimental group felt more

confident in their programming abilities, compared to 60% in the control

group. Additionally, students in the experimental group were more likely

to complete assignments on time, with an average completion rate of 94%

compared to 78% in the control group.

Teaching Programming Logic Through Interactive Platforms: A Case Study on Student

Outcomes

88 Vision International Scientific Journal, Special Edition, January 2023

Discussion

The findings of this study highlight the potential of interactive platforms

to significantly improve student outcomes in programming logic courses.

The data clearly show that students who used the interactive platform with

block-based programming and code visualization tools (the experimental

group) outperformed those who followed a traditional lecture-based

curriculum (the control group) in terms of learning gains, engagement,

and assignment completion rates.

The improvement in the experimental group’s post-test scores, which

were 36% higher than their pre-test scores, underscores the effectiveness

of using interactive tools for teaching abstract programming logic. These

results align with previous research suggesting that interactive, visual

approaches to programming can lower cognitive barriers for beginners,

making complex concepts more accessible (Weintrop & Wilensky, 2015).

The higher assignment completion rates in the experimental group further

indicate that the use of real-time feedback and code visualization kept

students motivated to stay on task, an essential factor in improving

programming proficiency.

1. Engagement and Active Learning

One of the key insights from this study is that students in the experimental

group reported higher levels of engagement and motivation compared to

the control group. The interactive platform encouraged active

participation, which is a critical component of constructivist learning

theories. Rather than passively receiving information, students were able

to engage directly with the material by experimenting with blocks of code

and receiving immediate feedback on their solutions.

The block-based interface played a pivotal role in lowering the barrier to

entry for students new to programming. Unlike traditional text-based

coding environments, which can be intimidating for beginners due to

syntax errors and complex commands, block-based programming allows

students to focus on the logic and structure of programming without

worrying about syntax. This aligns with studies that emphasize the

importance of reducing cognitive load when teaching programming

concepts (Guzdial & Soloway, 2002).

The real-time feedback offered by the platform also contributed to higher

engagement. Students were able to see the consequences of their actions

instantly, allowing them to understand how changes in their code affected

Mr. Ergin Diko, Mr. Yekin Abaz

Vision International Scientific Journal, Special Edition, January 2023 89

the output. This type of immediate feedback not only enhanced their

understanding of programming logic but also fostered a trial-and-error

learning process that encouraged persistence and problem-solving.

2. Improved Learning Outcomes

The significant improvement in the experimental group’s performance, as

reflected in the post-test scores and final grades, suggests that interactive

platforms are an effective tool for enhancing learning outcomes in

programming logic. The 36% increase in test scores for the experimental

group, compared to a 23% increase in the control group, demonstrates that

students using interactive platforms are better able to grasp and apply

programming concepts.

Moreover, the interactive platform helped students develop a deeper

understanding of key programming logic concepts, such as loops,

conditionals, and functions. By visualizing the flow of control and the

behavior of different code structures, students were able to build mental

models that facilitated deeper cognitive engagement. This aligns with the

findings of Hsu et al. (2018), who reported that interactive programming

tools improved students' problem-solving abilities and understanding of

programming structures.

3. Challenges and Limitations

While the overall impact of the interactive platform was positive, the study

also revealed some challenges. A small subset of students in the

experimental group expressed frustration with the block-based

programming interface. These students found the transition from block-

based programming to traditional text-based languages more difficult than

anticipated. This issue highlights a common limitation of block-based

environments: while they are excellent for introducing programming

logic, they may create a disconnect when students move to more

advanced, syntax-driven programming languages (Weintrop & Wilensky,

2015).

Additionally, although the majority of students responded positively to the

interactive platform, some students expressed concerns about the lack of

personalization in the feedback system. While the platform provided real-

time feedback on code execution, it did not offer detailed explanations of

why a particular solution was incorrect or how to improve it. This suggests

that future iterations of interactive platforms should integrate more

personalized feedback to enhance the learning experience further.

Teaching Programming Logic Through Interactive Platforms: A Case Study on Student

Outcomes

90 Vision International Scientific Journal, Special Edition, January 2023

Another limitation of this study is its relatively short duration. Conducted

over a single semester, the study was unable to assess the long-term

impact of using interactive platforms on students’ programming

proficiency. It is possible that the positive effects observed in this study

could diminish over time if students do not receive ongoing support or if

they struggle to transition to more traditional programming environments.

4. Implications for Teaching

The results of this study have important implications for teaching

programming logic, particularly at the introductory level. First, the use of

interactive platforms can help bridge the gap between abstract concepts

and practical application by offering students a hands-on, engaging way

to learn programming logic. This approach can be especially beneficial

for students who are new to programming, as it reduces cognitive overload

and allows them to focus on building their logical thinking skills.

Second, the study suggests that interactive platforms should be used as a

supplement to, rather than a replacement for, traditional teaching methods.

While interactive tools are effective for building foundational

programming skills, students will eventually need to transition to text-

based programming languages. Educators should consider introducing

hybrid learning environments that combine block-based programming

with more advanced, syntax-driven coding tasks as students progress.

Finally, the findings highlight the importance of providing students with

immediate, detailed feedback in programming courses. Interactive

platforms that incorporate real-time feedback can keep students engaged

and motivated, but it is equally important to offer personalized guidance

that helps students understand their mistakes and learn from them.

Conclusion

Interactive platforms, such as block-based programming environments

and code visualization tools, offer a promising approach to teaching

programming logic. The results of this case study demonstrate that these

tools can significantly enhance student engagement, motivation, and

learning outcomes. As technology continues to play a central role in

education, interactive platforms can serve as a valuable supplement to

traditional teaching methods, particularly in fields like programming,

where abstract concepts often present challenges to students.

Mr. Ergin Diko, Mr. Yekin Abaz

Vision International Scientific Journal, Special Edition, January 2023 91

Further research is needed to explore how interactive platforms can be

integrated into higher-level programming courses and to investigate the

long-term impact of these tools on students’ programming proficiency.

References

• Guzdial, M., & Soloway, E. (2002). Teaching the Nintendo

generation to program. Communications of the ACM, 45(4), 17-21.

• Hsu, T.-C., Wang, T.-I., & Wu, L.-Y. (2018). The effectiveness of

integrating interactive programming tools in programming courses.

Journal of Educational Technology & Society, 21(1), 23-35.

• Papert, S. (1980). Mindstorms: Children, computers, and powerful

ideas. Basic Books.

• Resnick, M., et al. (2009). Scratch: Programming for all.

Communications of the ACM, 52(11), 60-67.

• Robins, A., Rountree, J., & Rountree, N. (2003). Learning and

teaching programming: A review and discussion. Computer Science

Education, 13(2), 137-172.

• Weintrop, D., & Wilensky, U. (2015). To block or not to block:

Students’ perceptions

