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ABSTRACT 

 

     In inter-system connections or between any two points 

in communication, it is necessary to make sure that the data 

goes securely. This is achieved by encrypting the sent data. 

As the disciplines of cryptography and network security 

matured, more practical applications were developed that 

were not readily available to ensure network security. 

Today, encryption has become a necessity in the digital 

environment. In this study, basic cryptography terms are 

mentioned. The RSA algorithm (Rivest-Shamir-Adleman) 

is the basis of a cryptographic system, a suite of 

cryptographic algorithms used for private security services 

or purposes, and this allows public key encryption, widely 

used to secure particularly sensitive data sent over an 

insecure network such as the internet. Commonly used 

methods were examined and RSA encryption method was 

chosen in accordance with the purpose of the study. RSA, 

a public key encryption technique, is built on the difficulty 

of generating and processing very large integers. In this 

study, operations with large numbers that take a long time 

are completed in a short time using various methods. It has 

been reflected in the study by creating a more secure 

structure by using large prime numbers for the key 

generation process.  
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INTRODUCTION 

 Today, with the development of technology, computers and 

internet started to take a big place in our lives. As more and more people 

are online every day, it has become inevitable to transact over the internet. 

In addition, security should be given priority so that important functions 

such as banking transactions, commercial relations, government affairs, 

military affairs, private meetings and similar can be carried out smoothly.  

It is necessary to make sure that the data goes safely in inter-system 

connections or communication between any two points. Encryption and 

identity are the way to ensure security (Saracevic , Selimi, & Selimovic, 

Generation of cryptographic keys with algorithm of polygon triangulation 

and Catalan numbers, 2018). 

 This is achieved by encrypting the sent data. Thus, it is ensured 

that data is transmitted securely by using open communication channels 

(Saračević, Selimi, & Plojović, 2019). If an open communication channel 

is used in communication, the thought that the information that is intended 

to be kept confidential can be listened to by an unauthorized person or that 

it may enter the communication channel (interference) and corrupt or 

change the data (sending the wrong data), always creates an important 

problem. Cryptology is mainly divided into two parts, cryptography 

(encryption) and cryptanalysis (decryption). The original message to be 

sent is called plain text and the encrypted version of this message is called 

the cipher text-cryptograph. Encryption has been used for millennia to 

ensure security in military and diplomatic communications (Saracevic, 

Selimi, & Pepić, 2022). However, today it is also needed in the private 

sector. Communication between computers on subjects such as health 

services and financial affairs is carried out using open channels. During 

the use of these open channels, encryption is required in order to perform 

the above-mentioned works in a secure and confidential manner. 

Encryption has become a necessity in the digital environment today 

(Saračević, Selimi, & Mujevic, 2018). In this study, basic cryptography 

terms were mentioned, commonly used methods were examined and RSA 

encryption method was chosen in accordance with the purpose of the 

study. RSA is an encryption method created by Rivest, Shamir, and 

Adleman for the secure storage and transfer of data in digital media.  
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RSA ENCRYPTION ALGORITHM 

 In 1978, Ron Rivest, Adi Shamir, and Leonard Adleman 

introduced a cryptographic algorithm that would essentially replace the 

less secure National Bureau of Standards (NBS) algorithm. Most 

importantly, RSA implements a public key encryption system alongside 

digital signatures. RSA was motivated by the work of Diffie and Hellman 

published several years ago, which described the idea of such an algorithm 

but never really developed it. 

 Introduced at a time when the age of electronic e-mail was 

expected to emerge soon, RSA implemented two important ideas: 

 1. Public key encryption. This idea eliminates the need for a 

"courier" to deliver the keys to the recipients via another secure channel 

before delivering the originally intended message. In RSA, encryption 

keys are public, while decryption keys are not, so only the person with the 

correct decryption key can decrypt an encrypted message. Each has its 

own encryption and decryption keys. The keys must be made in such a 

way that the decryption key cannot be easily extracted from the public 

encryption key. 

 2. Digital signatures. The receiver may need to verify that the 

transmitted message actually originated from the sender (signature) and 

did not just come from there (authentication). This is done using the 

sender's decryption key, and the signature can later be verified by anyone 

using the corresponding public encryption key. Therefore, signatures 

cannot be forged. Also, no signer can later deny that he signed the 

message. 

 This is not only useful for email, but also for other electronic 

transactions and transmissions, such as fund transfers. The security of the 

RSA algorithm has so far been proven, as no attempt to break it has yet 

been successful, mostly due to the difficulty of factoring large numbers 

𝑛 =  𝑝𝑞, where 𝑝 and 𝑞 are large prime numbers. RSA is a public-key 

encryption technique that uses very large integers. It has been thought 

about the difficulty of creating and processing these numbers. A more 

secure structure has been created by using prime numbers for key 

generation. The key generation algorithm is as follows: 
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• Two very large prime numbers such as 𝑃 and 𝑄 are chosen. 

• The product of these two prime numbers 𝑁 =  𝑃 ∙ 𝑄 and their one 

missing 𝜑(𝑁) = (𝑃− )(𝑄 − 1) is calculated. 

• A prime integer E with 𝜑(𝑁) greater than 1 and less than 𝜑(𝑁) 

is selected. 

• The selected integer 𝐸 is inverted in mod 𝜑(𝑁), the result is is an 

integer something like 𝐷. 

• Integers 𝐸 and 𝑁 make up the public key, and integers 𝐷 and 𝑁 

make up the private key. 

After creating the public and private keys, the information to be sent is 

encrypted with the public key. Encryption is done as follows: 

The digital equivalent of the information to be encrypted is taken to the 𝐸 

power, and its equivalent in mode 𝑁  forms the encrypted text. A text 

encrypted with a public key can only be opened with a private key. 

Therefore, the cipher text, in the same way, is taken to the 𝐷 power of the 

cipher text's numerical equivalent, and its mod 𝑁 equivalent forms the 

original text. 

The reason for generating a key using the product of two prime numbers 

in this algorithm is because it is more difficult to factor the product of two 

prime numbers into prime factors than to separate non-prime numbers. 

The most time-consuming processes when formula is processed are 

superposition and mode finding. A small or easy-to-calculate value of 𝐸 

can be chosen to speed up the process. As we mentioned above, the 

smallness and repetitive use of the value reduces the security. 

But there are also methods to prevent this situation. In this study 

Encryption is done by using extended Euclidean algorithm and modular 

exponentiation methods, by processing large numbers in a short time. 

 

2. Public-key cryptosystems 

 Each user has their own encryption and decryption procedures, 𝐸 

and 𝐷, the first is in public file and the second is kept private. These 

procedures deal specifically with keys, which are two sets of special 

numbers in RSA. Of course, we start with the message itself, symbolized 
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by the "to be encrypted" 𝑀. There are four procedures that are specific 

and necessary to a public-key cryptosystem: 

 

 a) Decrypting an encrypted message gives you the original 

message, especially 

 

                        𝐷(𝐸(𝑀)  =  𝑀.                                                           (1) 

 

 b) Reversing the procedures still returns 𝑀: 

                            𝐸(𝐷(𝑀))  =  𝑀 .                                                     (2) 

 

 c) 𝐸 and 𝐷 are easy to calculate. 

 

 d) The introduction of 𝐸 does not jeopardize 𝐷's privacy, so you 

cannot easily tell 𝐷 from 𝐸. 

With a given E, we are still not given an efficient way of computing 𝐷. If 

𝐶 =  𝐸(𝑀) is the ciphertext, then trying to figure out 𝐷  by trying to 

satisfy an 𝑀 in 𝐸(𝑀)  =  𝐶 is unreasonably difficult: the number 

of messages to test would be impractically large. 

An E that satisfies (a), (c), and (d) is called a “trap-door one-way function” 

and is also a “trap-door one-way permutation”. It is a trap door because 

since it’s inverse D is easy to compute if certain “trapdoor” information is 

available, but otherwise hard. It is one-way because it is easy to compute 

in one direction, but hard in the other. It is a permutation because it 

satisfies (b), meaning every cipher text is a potential message, and every 

message is a cipher text of some other message. Statement (b) is in fact 

just needed to provide “signatures”. 

Now we turn to specific keys, and imagine users A and B (Alice and Bob) 

on a two-user public-key cryptosystem, with their keys: EA, EB, DA, DB. 
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With public key cryptography, all parties interested in secure 

communications publish their public keys (Merkle, p. 2000). As to how 

that is done depends on the protocol. In the SSH protocol, each server 

makes available through its port 22 the public key it has stored for your 

login id on the server. When a client, such as your laptop, wants to make 

a connection with an SSHD server, it sends a connection request to port 

22 of the server machine and the server makes its host key available 

automatically. On the other hand, in the SSL/TLS protocol, an HTTPS 

web server makes its public key available through a certificate of the sort 

you’ll see in the next lecture. As we will see, this solves one of the most 

vexing problems associated with symmetric-key cryptography — the 

problem of key distribution.  

 

 

Figure 1: This figure shows how public-key cryptography 

can be used for confidentiality, for digital signatures, and 



Mr. Ergin Diko, Mr. Mushab Ibraimi 
 

Vision International Scientific Journal, Volume 8, Issue 1, March 2023 157 

 

for both. (This figure is from Lecture 12 of “Computer and Network 

Security” by Avi Kak.) 

 Party A, if wanting to communicate confidentially with party B, 

can encrypt a message using B’s publicly available key. Such a 

communication would only be decipherable by B as only B would have 

access to the corresponding private key. This is illustrated by the top 

communication link in Figure 1. Party A, if wanting to send an 

authenticated message to party B, would encrypt the message with A’s 

own private key. Since this message would only be decipherable with A’s 

public key, that would establish the authenticity of the message — 

meaning that A was indeed the source of the message. This is illustrated 

by the middle communication link in Figure 1.  

 The communication link at the bottom of Figure 1 shows how 

public-key encryption can be used to provide both confidentiality and 

authentication at the same time. Note again that confidentiality means that 

we want to protect a message from eavesdroppers and authentication 

means that the recipient needs a guarantee as to the identity of the sender. 

 In Figure 1, A’s public and private keys are designated PUA and 

PRA. B’s public and private keys are designated PUB and PRB.  As shown 

at the bottom of Figure 1, let’s say that A wants to send a message M to B 

with both authentication and confidentiality. 

 

 The processing steps undertaken by A to convert M into its 

encrypted form C that can be placed on the wire are: 

                                     𝐶 =  𝐸 (𝑃𝑈B, 𝐸 (𝑃𝑅A, 𝑀))                                        (3) 

where E() stands for encryption. The processing steps under- taken by B 

to recover M from C are 

                          𝑀 =  𝐷(𝑃𝑈A, 𝐷(𝑃𝑅B, 𝐶))                                           (4) 

where D() stands for decryption. 

The sender A encrypting his/her message with its own private key PRA 

provides authentication. This step constitutes A putting his/her digital 

signature on the message.  
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Instead of applying the private key to the entire message, a sender may 

also “sign” a message by applying his/her private key to just a small block 

of data that is derived from the message to be sent. 

 

The sender A further encrypting his/her message with the receiver’s public 

key PUB provides confidentiality. 

Of course, the price paid for achieving confidentiality and authentication 

at the same time is that now the message must be processed four times in 

all for encryption/decryption. The message goes through two encryptions 

at the sender’s place and two decryptions at the receiver’s place. Each of 

these four steps involves separately the computationally complex public-

key algorithm.  

 

The math of the method 

 So far, we expect to make E and D easy to compute through simple 

arithmetic. We must now represent the message numerically, so that we 

can perform these arithmetic algorithms on it. Now let's represent M by 

an integer between 0 and n − 1. If the message is too long, sparse it up 

and encrypt separately. Let e, d, n be positive integers, with (e, n) as the 

encryption key, (d, n) the decryption key, 𝑛 =  𝑝𝑞 (Niven, New York, 

1972.). 

Now, we encrypt the message by raising it to the eth power modulo n to 

obtain C, the cipher text. We then decrypt C by raising it to the dth power 

modulo n to obtain M again. Formally, we obtain these encryption and 

decryption algorithms for E and D: 

 

                           𝐶 ≡  𝐸(𝑀)  ≡  𝑀e(𝑚𝑜𝑑 𝑛)                                                  (5) 

                                                        𝑀 ≡  𝐷(𝐶)  ≡  𝐶d (𝑚𝑜𝑑 𝑛) . 

 

 Note that we are preserving the same information size, since M 

and C are integers between 0 and n − 1, and because of the modular 
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congruence. Also note the simplicity of the fact that the 

encryption/decryption keys are both just pairs of integers, (e, n) and (d, n). 

These are different for every user, and should generally be subscripted, 

but we’ll consider just the general case here. 

Now comes the question of creating the encryption key itself. First, 

choosing two “random” large primes p and q, we multiply and produce 

𝑛 =  𝑝𝑞. Although n is public, it will not reveal p and q since it 

is essentially impossible to factor them form n, and therefore will assure 

that d is practically impossible to derive from e. 

Now we want to obtain the appropriate e and d. We pick d to be a random 

large integer, which must be coprime to (𝑝 −  1)  ·  (𝑞 −  1), meaning 

the following equation has to be satisfied: 

 

              𝑔𝑐𝑑(𝑑, (𝑝 −  1)  ·  (𝑞 −  1))  =  1 .                                        (6) 

 

“𝑔𝑐𝑑” means greatest common divisor. 

The reason we want d to be coprime to (𝑝 −  1)  ·  (𝑞 −  1) is peculiar. I 

will not show the “direct motivation” behind it; rather, it will become clear 

why that statement is important when l show towards the end of this 

section that it guarantees (1) and (2). 

We will want to compute e from 𝑑, 𝑝, 𝑎𝑛𝑑 𝑞, where e is the multiplicative 

inverse of d. That meanswe need to satisfy 

                      𝑒 ·  𝑑 =  1 (𝑚𝑜𝑑 𝜑(𝑛))                                                 (7) 

Here, we introduce the Euler totient function 𝜑(𝑛), whose output is the 

number of positive integersless than 𝑛 which are coprime to 𝑛. For primes 

𝑝, this clearly becomes 

 𝜑(𝑝)  =  𝑝 −  1 .  

 

For 𝑛, we obtain, by elementary properties of the totient function, that 

                        𝜑(𝑛)  =  𝜑(𝑝)  ·  𝜑(𝑞) 
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                               =  (𝑝 −  1)  ·  (𝑞 −  1)                                          (8)  

=  𝑛 −  (𝑝 +  𝑞)  +  1 . 

From this equation, we can substitute 𝜑(𝑛) into equation (7) and obtain 

𝑒 ·  𝑑 ≡  1 (𝑚𝑜𝑑 𝜑(𝑛)) 

which is equivalent to 

𝑒 ·  𝑑 =  𝑘 ·  𝜑(𝑛)  +  1 

for some integer 𝑘. 

y the laws of modular arithmetic, the multiplicative inverse of a modulo 

m exists if and only if a and m are coprime. Indeed, since d and φ(n) are 

coprime, d has a multiplicative inverse e in the ring of integers modulo 

φ(n). 

So far, we can safely assured the following: 

 

𝐷(𝐸(𝑀))  ≡  (𝐸(𝑀))d ≡  (𝑀e)d  (𝑚𝑜𝑑 𝑛)  =  𝑀e·d(𝑚𝑜𝑑 𝑛) 

𝐸(𝐷(𝑀))  ≡  (𝐷(𝑀))e ≡  (𝑀d)e (𝑚𝑜𝑑 𝑛)  =  𝑀e·d(𝑚𝑜𝑑 𝑛) 

 

Also, since 𝑒 ·  𝑑 =  𝑘 ·  𝜑(𝑛)  +  1, we can substitute into the above 

equations and obtain 

 

𝑀e·d ≡  𝑀k·φ(n)+1     (𝑚𝑜𝑑 𝑛) . 

 

Clearly, we want that to equal 𝑀. To prove this, will need an important 

identity due to Euler and Fermat: for any integer 𝑀 coprime to 𝑛, we have  

                              𝑀φ(n) ≡  1 (𝑚𝑜𝑑 𝑛) .                                                       (9) 

 

Since we previously specified that 0 ≤  𝑀 <  𝑛, we know that M would 

not be coprime to 𝑛 if and only if 𝑀 was either 𝑝 𝑜𝑟 𝑞, of the integers in 
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that interval. Therefore, the chances of 𝑀 happening to be 𝑝 𝑜𝑟 𝑞 are on 

the same order of magnitude as 2/𝑛 . This means that 𝑀  is almost 

definitely relatively prime to n, therefore equation (9) holds and, using it, 

we evaluate: 

𝑀𝑒 · 𝑑 ≡  𝑀k·φ(n)+1 ≡  (𝑀φ(n)) k 𝑀 ≡  1 k 𝑀 (𝑚𝑜𝑑 𝑛)  =  𝑀 . 

 

It turns out this works for all M, and in fact we see that (1) and (2) hold 

for all 

 𝑀, 0 ≤  𝑀 <  𝑛. 

Therefore E and D are inverse permutations. 

4. RSA Examples Solved with Extended Euclidean Algorithm 

Solution Example 1 

 

RSA Algorithm: 

1. Choose 2 prime numbers, e.g., p = 11 and q = 17 

2. Compute n such that n = p * q = 11 * 17 = 187 

3. Compute z such that z = (p-1)(q-1) = 10 * 16 = 160 

4. Choose e relatively prime to 160. 

 

Since 160= 5 * 5 * 5, it means that e cannot be 5. Pick any other 

prime. 

Let e = 19 

5. Compute d such that 

 

 d * e = 1 (mod 160), i.e., d = e-1 (mod 160) 

We read this as: d*e is congruent to 1, in modulo 160 math. That means 

that reminder of d*e/160 is the same as the reminder of 1/160, i.e. 1. 

In other words, d*e mod 160 = 1 mod 160. 
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This also can be read as "d is the multiplicative inverse of e = 19 mod 

160." This also be written as d = e-1 mod 160. 

 

(FYI: Modulo 160 math, roughly speaking, means that we take numbers 

in chunks of 160 numbers, i.e. numbers "repeat" after 160th. 

For example: In modulo 10 math, 

1 is "the same" as 11, 21, 31, 41, ... i.e. 1 and 11, etc. are congruent; 

also, 2 is congruent to 12,22, 32, . 

3 is congruent to 13, 23, 33, ... etc.). 

So, we need to find d such that d * e = 1 (mod 160). 

 

Brute force method: You could guess what d should be - if you are super 

good with large numbers, try to find d such that reminder of d*e/160 is 1. 

i.e. d*e mod 160=1 

So try all multiples of 19 until you find one that that works.  

 d=1: 19 mod 160=19 is not 1, so d=1 doesn’t work 

 d=2: 38 mod 160 = 38  

 d=3: 57 mod 160 = 57 

so it’s not worth checking d’s less than 8.  

 d=9: 178 mod 160 = 18 so d=9 won’t work  

 d=10 190 mod 160 = 30 

 d=11 

 ...... 

keep on going until you find d=59. Good luck! d can have a large value. 

 

There is another, shorter, brute force methods: 
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d = (z+1)/e but only if the result is whole. So, try to find multiples of z 

that give a whole number when added 1 and divided by e. It is shorter than 

the above brute force method. 

 d=  (1*160+1)/19 is not whole  

        (2*160 +1)/19 is not whole  

  (3*160 + 1)/19 

finally 7*z gives result d=59. 

 

 ExcelExampleBruteForce 

  e 19 

  z 160 

  d=(z+1)/e 1 8.47 

    2 16.89 

    3 25.32 

    4 33.74 

    5 42.16 

    6 50.58 

    7 59 

It might be easier to use the Extended Euclidean Algorithm to compute 

value for d. See solution details below. It turns out that: 

 d = 59 

Check:  19*59mod 160 = 1121 mod 160 = 1 

  1 mod 160 = 1 

So yes,  d*e = 1 (mod 160). 

Therefore: 

Public key = (e, n) = (19, 187) 

Private key = (d,n) = (59, 187) 
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Encrypt the message 

After we calculated the keys, the only thing left to do is to encrypt the 

message. Convert each character of the message into ASCII equivalent, 

and split the message into blocks of digits. Take the numerical value of 

each block, let's call its value PB, and encrypt each plain block PB using 

formula:  

encrypted(PB) = PBe mod n. 

Decrypt cyphered block CB using formula:  

decrypted(CB) = CBd mod n. 

Let's assume that we are trying to encrypt message 𝛼𝛽𝛾𝛿  which has 

ASCII representation of 001002.  Let's say we break the message into 

blocks of 3. 

So the blocks are 001, 002. 

So, the cyphertext is 001 127: 

00119 mod 187 = reminder of 119 / 187 = 1  

00219 mod 187 = 127 

Now let's decrypt 001 127. 

Again, we take the blocks of 3: 

00159  mod 187 = 001  

12759     mod 187 = 002 

 

EUCLIDIAN ALGORITHM IN DETAIL: 

Extended Euclidian Algorithm fits numbers into this Pattern: 
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Extended Euclidean Algorithm Example for e = 19, z = 160 

Start from the top, from z and e: 

160/19 = 8 R=8 8 = 160 * 1 - 19 * 8   (step 1) 

160 is the square, 19 is the triangle, 8 is circle, 8 is star 

Now fill in the same "starry" pattern, but this time plug in different values: 

put the current value of the triangle(i.e. 19) into the square; and put the 

current value of the star (i.e. 8) into the place of triangle. 

19/8 = 2 R=3                3      = 19 - 8 * 2 (step 2) 

19 is the square, 8 is the triangle,2 is circle, 3 is star 

Keep on doing this same thing until you reach reminder=1: 

8/3 = 2 R=2 2     = 8 - 3 * 2  (step 3) 

3/2 = 1 R=1 1     = 3 - 2 * 1  (step 4) 

Now try to make all remainders look like a combo of 160 and 19, i.e. try 

to make them look like: 

8 = 160*__   + 19* __  

3  = 160*__   + 19* __  

2 = 160*__   + 19* __  

1 = 160*__   + 19* __  

You could guess what values to put in! If you are good with large numbers, 

go ahead. However, it might be a little too time consuming. 

It is easiest to get this done if you substitute expressions which have 160 

and 19 in them already. So - start from 8 and keep on substituting. 

Applying the Extended Euclidean Algorithm to make appropriate 

substitutions, we get: 

8 = 160 - 8*19     (step 1) 

3 = 19 - 2*8     (step 2) 

             = 19 - 2(160 - 8*19)               

(substitution for 8) 
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             = 19 - 2*160 + 16*19                   

(algebraic simplification) 

             = -2*160 + 17*19      

    (simplest form) 

2 = 8 - 2*3      (step 3) 

 = (160 - 8*19) - 2*(-2*160 +17*19)               

(substitution for 8 and 3) 

 = 160 - 8*19 + 4*160 - 34*19    

   (simplify) 

 = 5*160 - 42*19      

    (simplest form) 

1 = 3 - 1*2      (step 4) 

 = (-2*160 + 17*19) - (5*160 - 42*19)                                  

(replace 3 and 2) 

 = -2*160 + 17*19 - 5*160 + 42*19    

  (simplify) 

 = -7*160 + 59*19      

    (simplest form) 

This means that d = 59 is the multiplicative inverse of e = 19 mod 160, 

which can also be written as 59 = 19-1 mod 160 

The public key is (e, 187) = (19, 187) 

The private key is (d, 187) = (59, 187) 

 

Extended Euclidean Algorithm Solutions Example 2 

Choose 2 prime numbers, e.g., p = 47 and q = 71  

Compute, n = p * q = 47 * 71 = 3337 

Compute, z = (p-1)(q-1) = 46 * 70 = 3220 

Note: p-1 = 46 = 2 * 23, q-1 = 70 = 2 * 5 * 7 
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Choose e relatively prime to 3220 

e = 79 which does not contain any common factors with p-1, q-1  

 

Compute d such that  

 d * e = 1 mod 3220, which can be written as, d = e-1 mod 3220  

 

By Extended Euclidean Algorithm, determine that d = 1019  

Public key = (e, n) = (79, 3337)  

Private key = (d,n) = (1019, 3337) 

 

Extended Euclidean Algorithm Example for e = 69, z = 3220  

 3220/79  = 40 R 60  =>  60 = 3220 - 79 * 40 (step 1)  

 79/60   = 1 R 19  =>  19 = 79 - 60 * 1      (step 2)  

 60/19   = 3 R 3  => 3 = 60 - 19 * 3         (step 3)  

 19/3   = 6 R 1   => 1 = 19 - 3 * 6     (step 4)  

 

Applying the Extended Euclidean Algorithm, we get:  

60  = 3220 - 40 * 79      (step 1)  

19  = 79 - 1 * 60       (step 2)  

 = 79 - 1*(3220 – 40*79)  

 = 79 - 3220 + 40*79  

 = -3220 + 41*79  

3  = 60 - 3*19       (step 3)  

 = (3220 - 40*79) - 3(-3220 + 41*79)  

 = 3220 – 40*79 +3*3220 -123*79  

 = 4*3220 – 163*79  

1  = 19 – 6*3       (step 4)  

 = (-3220 + 41*79) – 6(4*3220 – 163*79)  

 = -3220 + 41*79 -24 *3220 + 978*79  

 = -25*3220 + 1019*79  

The final equation means that d = 1019 is the multiplicative inverse of e 

= 79 mod 3220, which can also be written as 1019 = 79-1 mod 3220  

 

The public key is (e, 3337) = (79, 3337)  

The private key is (d,3337) = (1019, 3337) 

 



RSA & Extended Euclidean Algorithm With Examples of  Exponential RSA Ciphers, RSA 

Example Solution with Extended Euclidean Algorithm 
 

 
168 Vision International Scientific Journal, Volume 8, Issue 1, March 2023 

 

Exponential and RSA Ciphers  

 In the section on Fermat’s Little theorem, we proved the following, 

which we shall put to use:  

Fermat’s theorem. If p is a prime number and a is any number not 

divisible by p, then  

ap−1 ≡ 1 mod p 

Fermat’s theorem (Two Prime version). If p and q are different primes and 

a is any number not divisible by p or by q, then 

a(p−1)(q−1) ≡ 1 mod pq 

Some examples:  

522 ≡ 1 mod 23, 788 ≡ 1 mod 89, 23316336 ≡ 6499 

 

The first two depend on your knowledge that 23 and 89 are primes. The 

second depends on the factorization 6499 = 67 · 97 = pq. In this case (p − 

1)(q − 1) = 66 · 98 = 6336. Here 2332 is not divisible by 67 or by 97. Less 

obvious are  

513580908 ≡ 1 mod 81493 and 31891548238 ≡ 1 mod 548239 

The first congruence depends on the factorization 81493 = 227 · 359 into 

primes. The exponent 80908 is the product of 226 and 358 (each one less 

than the primes in the factorization of the modulus.) The second 

congruence depends on the fact that 548238 is a prime (gotten from the 

PrimeWizard program in the lab.)  

 

Large numbers like the last examples are clearly difficult to handle 

manually, though computers can deal with them by factoring into primes 

and by determining if a number is prime. Such congruences are used in 

cryptography. However the prime numbers will have 100 to 200 digits! In 

this case, the above numbers will seem like chicken feed. And for such 

huge primes, computers today can determine a factorization into primes 

only with great difficulty. A fast computer might take 20 or so years 

working full time to determine if a number is prime. And factoring 
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tremendous numbers is even more hopeless. So if a cipher scheme can be 

found which involves huge numbers and factoring them into primes, the 

code would be practically unbreakable even with the best computers and 

smartest minds. 

 

We first show how Fermat’s two result are used. We illustrate with 522 ≡ 

1 mod 23. If we wish to find 5223 mod 23, we write 223 = 22 · 10 + 3, so  

5223 = 522·10+3 = (522) 1053 ≡ 11053 = 53 = 125 ≡ 10 mod 23 

 

This amounts to replacing the exponent 223 by its value mod 22. (We 

divided by 22 to get the remainder 3.) In general, to compute as mod p, 

where p and a are as before, we can replace s by its value mod (p − 1). 

Note: The congruence is mod p but the exponents of a can be taken mod 

p − 1.  

Important consequence of Fermat’s little theorem. If p is a prime and 

a is a number not divisible by p, then ar ≡ a8 mod p  when  r ≡ s mod (p − 

1).  

Example. Find 171388 mod 67.  

Answer: Working the exponent mod 66, we find 1388 ≡ 2 mod 66. So   

171388 ≡ 172 = 189 ≡ 25 mod 67. 

 

In exactly the same way, we can reduce a power mod n when n is the 

product of different primes p and q.  

Important consequence of Fermat’s little theorem (Two Prime 

Version). If p and q are different primes and a is a number not divisible 

by p or by q, then ar ≡ as mod p when r ≡ s mod (p − 1)(q − 1).  

 

Example. Find 72763 mod 143.  

Answer: Note that 143 = 11 · 13. (If you didn’t see this immediately, check 

143 mod 11 by the alternating sum test.) So here p = 11 and q = 13, so (p 
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− 1)(q − 1) = 10 · 12 = 120. We can reduce the exponent 2763 mod 120. 

We have 2763 ≡ 3 mod 120 so  

72763 ≡ 73 = 343 ≡ 57 mod 143. 

 

Exponential Codes – One Prime. A code attempts to send a message 

which can be read only by someone who has the key to the code. The 

message will be a stream of letters, but this is usually coded and 

transmitted as a stream of numbers. The receiver then decodes these 

numbers to get the original stream and hence the letters and the message. 

For example, suppose we wish to sent the message  

DONT COME BEFORE FIVE CLOCK 

Ignoring spaces, we convert each of these letters into their number 

equivalent (alway using two digits and ignoring spaces) and we try to code 

the number stream  

041514200315130502050615180506092205150312150311 

 

We break this into chunks depending on our coding system – say chunks 

of 3 – and we then proceed to send coded version of the three digit 

numbers  

 

041 514 200 315 130 502 050 615 180 506 092 205 150 312 150 311 

 

A (one prime) exponential code is given by the formula C ≡ Pe mod p 

where p is a fixed prime, and e is relatively prime to (p − 1). Here, P is the 

plaintext (as number) and C is its cipher. For example, let’s take p = 947. 

Then p − 1 = 946 = 2 · 11 · 43. Let’s take e = 53 which is prime to 946 

since it is not divisible by 2 or 3 or 503.1 So in this case, the exponential 

cipher we are using will be  

C ≡ P53 mod 947 

Our “message” is 041 514 200 315 . . . . We code this one three digit 

number at a time. For P = 041, we get  
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C ≡ 04153 ≡ 544 mod 947 

Similarly, P = 514 is coded as C ≡ 51453 mod 947 giving C = 390, and the 

third triple digit number 200 is coded as 20053 ≡ 677 mod 947. Proceeding 

in this way, we generate the cipher text for each part of our message and 

we send the message  

544 390 677 ... 

confident that no one will understand. The receiver knows all about the 

prime 947 but she takes exponent 357. (This will be shortly explained.) 

So she decodes 544 to get P = 544357 mod 947. This works out to 41 or 

041 since three digit number are understood. Similarly, 390357 ≡ 514 mod 

947 and 677357 ≡ 200 mod 947. So the decoded message starts as 041 514 

200 . . . . Making a stream of digits, we get 041514200. . . or 04 15 14 20 

. . . . In letters, the decoded message is DONT. . . .  

 

Summarizing this technique, we chose p = 947 and e = 53 for coding three 

digit numbers, and we chose d = 357 for decoding:  

C ≡ P53 mod 947; P ≡ C357 mod 947 

The coder knows exponent 53, the decoder knows exponent 357, both 

know the prime 947.  

 

What is the magic use of the exponents 357 and 53? How does that work? 

The answer is the 357 and 53 are inverses mod 946. (Note: 946 not 947!). 

It works because the coded message is C ≡ P53 mod 947. The decoder then 

take C357 = P53·357. But this exponent is congruent to 1 mod 946 since that’s 

how 53 and 357 were chosen. Thus C357 ≡ P1 = P mod 947. Note that we 

always get and code three digit numbers since that’s the size of the 

remainders mod 947.  

Summary of exponential coding mod p. For given prime p and number 

e relatively prime to p−1, choose d so that ed ≡ 1 mod (p−1). Then the 

coding is given by C ≡ Pe mod p and the decoding is given by P ≡ Cd mod 

p. In all cases P and C are chosen between 0 and p − 1 inclusive, namely 

the possible remainders when dividing by p. 
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Exponential Codes – Two primes. The situation here is almost the same, 

but it is the basis for the RSA coding system, considered the most 

powerful, so far unbreakable coding system ever. We start with two 

different primes p and q. Take n = pq, and take e relatively prime to (p − 

1)(q − 1), and take d as an inverse of e mod (p − 1)(q − 1). Then ed ≡ 1 

mod (p − 1)(q − 1). The coder is given the exponent e and the decoder the 

exponent d. Both know the number n = pq. The coder computes the code 

using the formula C ≡ Pe mod n and the decoder decodes using the formula 

P ≡ Cd mod n. Everything on the surface is the same. For example, let’s 

choose small numbers so we can transmit two digits (or one letter) at a 

time. Take p = 11 and q = 17. Then n = pq = 187. Here (p − 1)(q − 1) = 

160 with prime divisors 2 and 5. Choose e = 57, say. Then we must find 

its inverse d mod 160. This calculates to (trust me) d = 73. The coder is 

given the number n = 187 and exponent e = 57. The decoder is given the 

number n = 187 and exponent d = 73. Say the coder wants to sent the 

message NO, or 14 15. He computes 1457 mod 187 which works out to be 

20, and 1557 ≡ 49 mod 187. the message is simply  

20 49 

The receiver gets the message 20 49. He decodes 2073 ≡ 14 mod 187 and 

4973 ≡ 15. The decoded message is, naturally, 14 15 or NO!  

 

Summary of exponential coding mod pq. For given primes p and q take 

n = pq and number e relatively prime to (p − 1)(q − 1), choose d so that ed 

≡ 1 mod (p − 1)(q − 1). Then the coding is given by C ≡ Pe mod n and the 

decoding is given by P ≡ Cd mod n. In all cases P and C are chosen 

between 0 and n − 1 inclusive, namely the possible remainders when 

dividing by n.  

 

CONCLUSION 

 RSA is a strong encryption algorithm that has stood a partial test 

of time. RSA implements a public-key cryptosystem that allows secure 

communications and “digital signatures”, and its security rests in part on 

the difficulty of factoring large numbers (Diffie, (June 1977)) and (Diffie, 

(Nov. 1976)). The authors urged anyone to attempt to break their code, 
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whether by factorization techniques or otherwise, and nobody to date 

seems to have succeeded. This has in effect certified RSA, and will 

continue to assure its security for as long as it stands the test of time 

against such break-ins. 

At the time, the RSA encryption function seemed to be the only known 

candidate for a trap-door one-way permutation, but now, others certainly 

exist, such as those described in (Glasby, 72(3)(1999), 228–230.) and 

(Pollard, p. 1973). 

The average size of n must increase with time as more efficient factoring 

algorithms are made and as computers are getting faster. In 1978, the 

authors of RSA suggested 200-digit long values for n. “As of 2008, the 

largest (known) number factored by a general-purpose factoring algorithm 

was [200 digits (663 bits)] long” . Currently, RSA keys are typically 

between 1024 and 2048 bits long, which experts predict may be breakable 

in the near future. So far, no one sees 4096-bit keys to be broken anytime 

soon. 

Today, an n no longer than 300 bits can be factored on a PC in several 

hours, thus keys are typically 4-7 times longer today. 

RSA is slower than certain other symmetric cryptosystems. RSA is, in 

fact, commonly used to securely transmit the keys for another less secure, 

but faster algorithm. Several issues in fact exist that could potentially 

damage RSA’s security, such as timing attacks and problems with key 

distribution. I will not go into detail about these issues here. They are 

described succinctly in (Pohlig, 1975). In fact, these issues have solutions; 

the only downside is that any device implementing RSA would have to 

have much more hardware and software to counter certain types of attacks 

or attempts at eavesdropping. 

A very major threat to RSA would be a solution to the Riemann 

hypothesis. Thus a solution has neither been proven to exist nor to not 

exist. Development on the Riemann hypothesis is currently relatively 

stagnant (Miller). However, if a solution were found, prime numbers 

would be too easy to find, and RSA would fall apart. Undoubtedly, much 

more sophisticated algorithms than RSA will continue to be developed as 

mathematicians discover more in the fields of number theory and 

cryptanalysis. 
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