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ABSTRACT 

 

Computational geometry is a branch of computer science 

that discusses algorithms for solving geometric problems. 

It considers such tasks as triangulation, building a convex 

hull, determining whether one object belongs to another, 

finding their intersection, etc. Computational geometry 

algorithms operate with the geometric objects with the 

point, a segment, a polygon, and circles. Two important 

algorithms of computational geometry that have many 

applications are Delaunay triangulation and the Voronoi 

diagram. The Voronoi splitting is used in computational 

materials science to create synthetic polycrystalline 

aggregates. In computer graphics is used for randomly 

splitting surfaces. These algorithms are used in a gold 

method or the area stealing method for interpolating a 

function in 2D. In this paper, are shown three 

implementations of the Delaunay triangulation and 

Voronoi diagram in the software package Mathematica. 
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1. INTRODUCTION 

Computational geometry is a descendant of classical geometry and 

computer science. It is part of algorithms that deal with the development 

and analysis of efficient algorithms and data structures suitable for solving 

geometric problems (Selimi et. al, 2019). Particularly are important the 

geometric problems where brute force solutions are not practically usable 

(Janičić, 2016). Computational geometry as a discipline is developed 

thanks to problems and applications in computer graphics, computer 

vision, robotics, databases, geographic information systems, CAD / CAM 

systems, molecular biology, etc. Some of the specific applications are 

applications in virtual reality, motion planning, collision detection, drug 

design, fluid dynamics, etc (Selimi et. al, 2018). The field of 

computational geometry usually deals with problems in the Euclidean 

plane or space and involves the availability of elementary operations such 

as: checking that the point belongs to a straight / circle, whether they are 

straight-cut, and the like. 

In this paper we implement the computational geometry algorithms in 

software package Mathematica. Mathematica is the world’s only fully 

integrated environment for technical computing (Wolfram, 2013). It is 

developed in programming language Wolfram. 

The Mathematica program is divided into two parts, the kernel, and 

the front end. The kernel interprets the expressions in Wolfram language 

and gives the resulting expressions. The front end, designed by Theodore 

Gray, has a graphical user interface, which allows the creation and 

modification of documents containing program code with prettyprinting, 

formatted text along with results including mathematics, graphics, 

graphical user interface components, tables, and sounds. All content and 

all formatting can be algorithmically generated and interactively 
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modified. Most standard text editing options are supported. It also 

contains a spell checker but does not do this in parallel as the user enters 

the text. 

Documents can be structured using a cell hierarchy, which allows for 

document sharing and sketching, and supports automatic number 

indexing. Documents can be displayed as a slide show for presentations. 

Notebooks and their contents are presented as expressions in Mathematica 

that can be created, modified or analyzed by Mathematica. This allows 

conversion to other formats such as TeX or XML. 

The front features development tools like debuggers, add-ons, and 

automatic syntax coloring. Among the alternative front ends is Wolfram 

Workbench, an integrated Eclipse-based development environment, first 

shown in 2006. It provides tools for project-based Mathematica code 

development, including audit management, debugging, profiling and 

testing (https://www.macworld.com). The Mathematica Kernel also has a 

command line for the front end (https://reference.wolfram.com). Other 

interfaces include JMath, based on the GNU readline 

(http://robotics.caltech.edu), and MASH, which runs standalone 

Mathematica programs (with arguments) from the UNIX command line. 

Wolfram Research has published a series of tutorials for beginners to 

familiarize the user with the user interface and the launche . 

 

2. COMPUTATIONAL GEOMETRY ALGORITHMS 

Computational geometry is basically a discrete discipline. 

Problems of computational geometry are generally the subject of research 

in other fields of science such as “geometric modeling”. Computational 

geometry explores simple and easily approximating surfaces and 

geometric objects. The basic terms that appear in this discipline are the 

point and line segment, which then builds more complex structures. 

https://www.macworld.com/
https://reference.wolfram.com/language/tutorial/UsingATextBasedInterface.html
http://robotics.caltech.edu/~radford/jmath/
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Among the most important geometric figures of this discipline are the 

polygons in the plane, while in their space their generalization of 

polyhedra. Polygon is a closed geometric figure in a plane that is a finite 

collection of crossed line segments called the edges of the polygon. The 

points where the two edges meet are called vertices of the polygon. A set 

of all edges and vertices of a polygon is called the boundary of the polygon 

and is labeled with ∂P. In the Figure 1.1(a) is given polygon with nine 

edges joined at nine vertices.  In the diagrams (b)–(d) are given objects 

that fail to be polygons.  From Jordan curve theorem we know that the 

every simple closed planar curve separates the plane into a bounded 

interior region and an unbounded exterior.  For this reason in this paper, 

polygons representing a special part of the Jordan curve theorem are 

analyzed.  

 

 

 

 

 

 

Figure 2.1. (a) A polygon. (b)–(d) Objects that are not polygons [17 ,pp.2]. 

 

Theorem 1. (Polygonal Jordan Curve) (Devadoss et al., 2011). The 

boundary 𝜕𝑃 of a polygon P partitions the plane into two parts. In 

particular, the two components of  ℝ2 \𝜕𝑃 are the bounded interior and 

the unbounded exterior. 

Proof. Let P be a polygon in the plane. We first choose a fixed direction 

in the plane that is not parallel to any edge of P. This is always possible 

because P has a finite number of edges. Then any point x in the plane not 

on 𝜕𝑃 falls into one of two sets: 
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1. The ray through x in the fixed direction crosses 𝜕𝑃 an even 

number of times: x is exterior. Here a ray through a vertex is not 

counted as crossing 𝜕𝑃. 

2. The ray through x in the fixed direction crosses ∂P an odd 

number of times: x is interior. 

Notice that all points on a line segment that do not intersect 𝜕𝑃 must lie 

in the same set. Thus the even sets and the odd sets are connected. And 

moreover, if there is a path between points in different sets, then this 

path must intersect 𝜕𝑃. 

 

2.1 Triangulation  

Definition 1.  A triangulation of a polygon P is a decomposition of P 

into triangles by a maximal set of non-crossing diagonals (Devadoss et 

al., 2011). 

Here the word maximal has the mean that there is no other noncrossing 

diagonal which is in the set of triangulations of a geometric figure. Figure 

2.3 shows three different triangulations of the polygon. There are several 

questions asked for triangulation of the polygon.  

• What is the number of different triangulations of a given polygon? 

• How many triangles consist each triangulation of a given polygon?  

• Does every polygon always have a triangulation?  

• Must each polygon have at least one diagonal?  

• We start with the last question. 

 

 

 

 

 

 

          Figure 2.2. Finding a diagonal of a polygon through sweeping [17, pp.4]. 
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Lemma 2. (Devadoss et al., 2011) Every polygon with more than three 

vertices has a diagonal. 

Proof. Let v be the lowest vertex of P; if there are several, let v be the 

rightmost. Let a and b be the two neighboring vertices to v. If the segment 

ab lies in P and does not otherwise touch ∂P, it is diagonal. Otherwise, 

since P has more than three vertices, the closed triangle formed by a, b, 

and v contains at least one vertex of P. Let L be a line parallel to segment 

ab passing through v. Sweep this line from v parallel to itself upward 

toward ab; see Figure 1.4. Let x be the first vertex of the closed triangle 

abv, different from a, b, or v, that L meets along this sweep. The (shaded) 

triangular region of the polygon below line L and above v is empty of 

vertices of P. Because vx cannot intersect ∂P except at v and x, we see that 

vx is diagonal. 

 

Theorem 3. (Devadoss et al., 2011) Every polygon has a triangulation. 

Proof. We prove this by induction on the number of vertices n of the 

polygon P. If n = 3, then P is a triangle and we are finished. Let n > 3 and 

assume the theorem is true for all polygons with fewer than n vertices. 

Using Lemma 1.2, find a diagonal cutting P into polygons P1 

and P2. Because both P1 and P2 have fewer vertices than n, P1 and P2 can 

be triangulated by the induction hypothesis. By the Jordan curve theorem 

(Theorem 1.1), the interior of P1 is in the exterior of P2, and so no triangles 

of P1 will overlap with those of P2. A similar statement holds for the 

triangles of P2. Thus P has a triangulation as well. 

We know that every polygon has at least one triangulation. Next, we 

show that the number of triangles in any triangulation of a fixed polygon 

is the same. The proof is essentially the same as that of Theorem 1.4, 

with more quantitative detail. 
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Theorem 4. (Devadoss et al., 2011) Every triangulation of a polygon P 

with n vertices has n − 2 triangles and n − 3 diagonals. 

Proof. We prove this by induction on n. When n = 3, the statement is 

trivially true. Let n > 3 and assume the statement is true for all polygons 

with fewer than n vertices. Choose a diagonal d joining vertices a and b, 

cutting P into polygons P1 and P2 having n1 and n2 vertices, respectively. 

Because a and b appear in both P1 and P2, we know n1 + n2 = n+ 2. The 

induction hypothesis implies that there are n1 − 2 and n2 − 2 triangles in 

P1 and P2, respectively. Hence P has (n1 − 2) + (n2 − 2) = (n1 + n2) − 4 = 

(n + 2) − 4 = n – 2 triangles. Similarly, P has (n1 − 3) + (n2 − 3) + 1 = n − 

3 diagonals, with the +1 term counting d. 

In many algorithms and proofs, a special triangle should be 

included which is often used in the start of recursion or initial induction. 

The place of these special triangles in computational geometry is often 

used "ears". Three consecutive vertices a, b, c form an ear of a polygon if 

ac is a diagonal of the polygon. The vertex b is called the ear tip. 

 

Corollary 5. (Devadoss et al., 2011) Every polygon with more than three 

vertices has at least two ears. 

Proof. Consider any triangulation of a polygon P with n > 3 vertices, 

which by Theorem 1.4 partitions P into n − 2 triangles. Each triangle 

covers at most two edges of ∂P. Because there are n edges on the boundary 

of P but only n − 2 triangles, by the pigeonhole principle at least two 

triangles must contain two edges of P. These are the ears. 

The proof of Theorem 4 leads to one approach for the triangulation 

of polygons. One diagonal is detected at each step and the problem is 

reduced to a smaller problem. If the polygon has  𝑛 vertices, then this step 

has complexity 𝑂 (𝑛). After this step, the problem can be reduced to a 

problem by 𝑛 - 1, so the total complexity is 𝑂 (𝑛2).  In some special cases, 
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for example, for a convex polygon, triangulation is trivial - for a convex 

polygon, it can be performed in time 𝑂 (𝑛). 

The idea, then, may be to first decompose it into convex parts and then 

apply triangulation to them. However, it is not easy to decompose a 

polygon into convex parts and, instead, the polygon will be decomposed 

into so-called monotone parts. 

If the point set in general position is in convex position with all points 

on the hull then the number of triangulations of these points is the Catalan 

number (Saracevic, 2019). 

 

2.2 Voronoi Diagram 

A Voronoi diagram is the computational geometry concept that 

represents a partition of the given space onto regions, with bounds 

determined by distances to a specified family of objects. For example, 

Voronoi diagrams are useful in developing the system that needs to 

quickly respond to the customer which restaurant is closest to it at that 

moment. Many natural and social phenomena can be described and 

explained in terms of Voronoi diagrams: in anthropology, areas 

influenced by culture, in crystallography, the structure of crystals and 

metals, in ecology, competition between plants, in the economy, models 

of the market, etc (Janičić, 2016). 

Knut's formulation: there are 𝑛 posts in the city and each user uses the 

mail closest to him (for simplicity, it is assumed that the travel time to the 

mail is proportional to the Euclidean distance). The question is what an 

area served by a post looks like. If a new post is to be opened, where would 

it best be located? etc. 

 

Definition 2. Let P = {p1, p2, ... , pn} be a set of points in the two-

dimensional Euclidean plane. These are called the sites. Partition the plane 
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by assigning every point in the plane to its nearest site. All those points 

assigned to pi form the Voronoi region V(pi).  V(pi) consists of all the 

points at least as close to Pi as to any other site: 

V(pi) = {x: | pi – x| ≤  | pj – x| , ∀ j ≠ i}. 

This set is closed. Some points do not have a unique nearest site or 

nearest neighbor. The set of all points that have more than one nearest 

neighbor form the Voronoi diagram V( P) for the set of sites (O’Rourke, 

1997). A Voronoi diagram is a set of branches and vertices of 

decomposition. Then when it is said that the Voronoi diagram is connected 

- it is meant that the set of branches is connected. The Voronoi diagram 

provides a wealth of useful information.  For example, if the two areas are 

adjacent, then is expected the appropriate sites are to compete for clients 

in the border region (Janičić, 2016). 

 

Figure 2.3 The Voronoi diagram for 10 sites (Devadoss et al., 2011, pp. 99). 

 

2.3 Delaunay Triangulation 

In mathematics and computational geometry, a Delaunay triangulation 

(also known as a Delone triangulation) for a given set P of discrete points 

in a plane is a triangulation DT(P) such that no point in P is inside the 

circumcircle of any triangle in DT(P). Delaunay triangulations maximize 

the minimum angle of all the angles of the triangles in the triangulation; 

they tend to avoid sliver triangles (https://en.wikipedia.org/). In 1934 
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Delaunay proved that when the dual graph is drawn with straight lines, it 

produces a planar triangulation of the Voronoi sites P (if no four sites are 

co-circular), now called the Delaunay triangulation V(P) (O’Rourke, 

1997). Delaunay triangulation and Voronoi diagram are dual structures. 

Generally, it is not obvious that using straight lines in the dual would avoid 

crossings in the dual; the dual segment between two sites does not 

necessarily cross the Voronoi edge shared between their Voronoi regions.  

The circumcenters of Delaunay triangles are the vertices of the 

Voronoi diagram. In the 2D case, the Voronoi vertices are connected via 

edges, that can be derived from adjacency-relationships of the Delaunay 

triangles: If two triangles share an edge in the Delaunay triangulation, 

their circumcenters are to be connected with an edge in the Voronoi 

tesselation (https://en.wikipedia.org/). 

 

 

 

 

 

 

 

 

 

 

a)                                                     b) 

                            Figure 2.4 a) The Delaunay triangulation with all the circumcircles and      

                           their centers (in red).  

                       b) Connecting the centers of the circumcircles produces    

                           the Voronoi diagram (in red). 

 

https://en.wikipedia.org/
https://en.wikipedia.org/wiki/Voronoi_diagram
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3. IMPLEMENTATION OF DELAUNAY TRIANGULATION 

AND VORONOI DIAGRAM IN MATHEMATICA 

In this section, we give three different examples of 

implementations of the Delaunay triangulation and Voronoi diagram. 

The Computational Geometry package in Mathematica provides 

functions for solving these and related problems in the case of planar 

points and the Euclidean distance metric. 

• The optimization problem of Euclidean minimum spanning 

trees, Delaunay triangulations, and Voronoi diagrams. 

Computational geometry functions. 

 

The convex hull of a set S is the boundary of the smallest set 

containing S. The Voronoi diagram of S is the collection of nearest 

neighborhoods for each of the points in S. For points in the plane, these 

neighborhoods are polygons. The Delaunay triangulation of S is a 

triangulation of the points in S such that no triangle contains a point of S in 

its circumcircle. This is equivalent to connecting the points in S according 

to whether their neighborhood polygons share a common side 

(https://reference.wolfram.com). 

<<ComputationalGeometry` 
 
data2D={{5.4,13},{6.7,15.25},{6.9,12.8},{2.1,11.1},{9.5,14.9}, 

{13.2,11.9}, {10.3,12.3},{6.8,9.5},{3.3,7.7},{0.6,5.1},{5.3,2.4}, 

{8.45,4.7},{11.5,9.6}, {13.8,7.3},{12.9,3.1},{11,1.1}}; 

https://reference.wolfram.com/language/ComputationalGeometry/tutorial/ComputationalGeometry.html
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convexhull=ConvexHull[data2D] (This gives the indices of the points lying on 

the convex hull in counterclockwise order.) 

 

ConvexHull[{{0,0},{1,0},{0,0},{2,0},{1,1}}] (Duplicate points are ignored.) 

 

(Shallow[#,{5,6}]&)[delval=DelaunayTriangulation[data2D]] 

{vorvert,vorval}=VoronoiDiagram[data2D]; (This gives the counterclockwise 

vertex adjacency list for each point in the Delaunay triangulation. For example, the 

entry {1,{4,3,2}} indicates that the first point in data2D is connected in counterclockwise 

order to the fourth, third, and second points.) 

 

While Delaunay triangulation need only specify the connections 

between points, Voronoi diagram must specify both a set of diagram 

vertices and the connections between those vertices. Another difference 

between the two functions is that while a triangulation consists of 

segments, a diagram consists of both segments and rays 

(https://reference.wolfram.com). For example, in the case of a Voronoi 

diagram, points in the interior of the convex hull will have nearest 

neighborhoods that are closed polygons, but the nearest neighborhoods of 

points on the convex hull will be open. 

These considerations make the output of Voronoi diagram more 

complex than that of Delaunay triangulation. The diagram is given as a 

list of diagram vertices followed by a diagram vertex adjacency list 

(https://reference.wolfram.com). The finite vertices of the diagram are 

listed first in the vertex list. The vertices lying at infinity have 

head Ray and are listed last. 

 

{First[vorvert],Last[vorvert]} (This assigns the list of Voronoi diagram vertices 

to vorvert and the Voronoi diagram vertex adjacency list to vorval.) 

 

vorval//Short (Each entry in  vorval gives the index of a point in  data2D followed 

by a counterclockwise list of the Voronoi diagram vertices that comprise the point's 

nearest neighborhood polygon.) 

https://reference.wolfram.com/language/ComputationalGeometry/tutorial/ComputationalGeometry.html
https://reference.wolfram.com/language/ComputationalGeometry/tutorial/ComputationalGeometry.html
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vorval[[1,2]] (Here is the Voronoi polygon vertex adjacency list for the first point in  

data2D.) 

vorvert[[%]] (This selects the coordinates of the polygon vertices from  vorvert. The 

first two vertices have head  List, while the last two have head  Ray. Thus, the Voronoi 

polygon associated with the first point in  data2D is open and is defined by a segment 

and two rays.) 

 

Computing the Voronoi diagram using the Delaunay triangulation 

and the convex hull. 

 

 
 
VoronoiDiagram[data2D,delval]; (This computes the Voronoi diagram of  

data2D more efficiently by making use of the Delaunay triangulation vertex adjacency 

list) 

 

VoronoiDiagram[data2D,delval,convexhull]; (Here the Voronoi diagram is 

computed using both the Delaunay triangulation and the convex hull.) 

 

 

Computational geometry plotting functions. 

 

 
 
 
 
 

http://reference.wolfram.com/mathematica/ref/List.html
http://reference.wolfram.com/mathematica/ComputationalGeometry/ref/Ray.html
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PlanarGraphPlot[data2D] (The default of  PlanarGraphPlot is a plot of the 

Delaunay triangulation of the points. ) 

 
 
 
 
 
 
 
 
 
PlanarGraphPlot[data2D,convexhull] (This plots the convex hull of the 

points.) 

 
 

 

 

 

 

DiagramPlot[data2D] ( The default of  DiagramPlot is a plot of the Voronoi diagram 

of the points.) 
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• A 2D Delaunay mesh from a list of points: 

pts=RandomReal[{-1,1},{100,2}]; 
ℛ=DelaunayMesh[pts]; 
HighlightMesh[ℛ,Style[0,Black]] 

 

 

 

 

 

 

 

 

 

• Delaunay mesh and Voronoi diagram of given image: 

 
    img= 

 
 
edges=EdgeDetect[img,5] 

imgBounds=Transpose[{{0,0},ImageDimensions[img]}]; 

vm=DelaunayMesh[ImageValuePositions[edges,White],i

mgBounds] 

vml=NestList[DelaunayMesh[Mean@@@MeshPrimitive

s[#,2],imgBounds]&,vm,3] 

Graphics[Table[{RGBColor[ImageValue[img,Mean@@p]

],p},{p,MeshPrimitives[Last[vml],2]}]] 
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4. CONCLUSION 

An exhaustive list of Voronoi diagram applications today we see 

in programming, game development, and cartography. The numerous of 

the navigation systems in the developed game engines are based on the 

Voronoi diagram. The various geolocation software uses Voronoi 

diagrams. Geolocation reference systems use the Voronoi diagram to 

determine, for example, the nearest grocery store, for various search and 

analysis of the location. 

Any geographical diagrams showing the distribution of something 

can be clearly illustrated with the help of colored Voronoi diagrams. This 

diagram made the transition of the needed indicator  (for example, 

temperature) to be visible. Also, it can make various filter-photo handlers 

using the Voronoi diagram, getting some kind of mosaic. 

There are many ideas of using the Voronoi diagram in architecture 

and design since it itself is a beautiful drawing, a kind of “geometric web”, 

so there are many cases of using it as one of the main elements of a 

composition or even a frame all creation.  

In archeology, Voronoi polygons are used to map the range of use of tools 

in ancient cultures and to study the influence of rival centers of trade. In 
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ecology, the body's ability to survive depends on the number of neighbors 

with whom it must fight for food and light. 

Various kinds of grids (and skeletons) of objects in space are 

constructed using Voronoi diagrams and Delaunay triangulation. 

The Voronoi diagrams are used in the combined influence of 

electric and short-range forces and help to determine the structure of 

molecules. 
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